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Topics

• Summation-by-parts operators on simplices

• Exploratory aerodynamic shape optimization
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High-Order Methods

� Potentially efficient for a wide range of problems
� Lower cost for a given accuracy

� High order preferred primarily when error tolerance is tight

� Singularities and discontinuities are an issue

� Robustness is an issue

� Wide range of high-order methods available
� Finite difference, finite element, finite volume, spectral

difference, spectral element, spectral volume

� Much current interest in discontinuous Galerkin and flux

reconstruction methods



Properties of High-Order Methods

� Traditional implementation of finite difference methods
� Repeating interior operator
� Fixed number of boundary operators under refinement
� Kronecker products in multiple dimensions
� Curvilinear coordinate transformation
� Mesh smoothness requirements
� Very efficient

� Element type methods
� applicable to unstructured grids
� with interior degrees of freedom do not rely on mesh

smoothness
� amenable to h and p refinement



Summation by Parts

� Enables construction of operators with provable time

stability

� Usually used with simultaneous approximation terms

� Usually used with finite-difference operators with a

repeating interior operator on a uniform mesh

� Other known operators possess the SBP property

(Carpenter and Gottlieb, Gassner)

� Recently generalized by Del Rey Fernández et al. to apply

to nonuniform nodal distributions and element-type

operators



Opportunities

� Combining the concept of a generalized SBP operator

with the idea of implementing SBP operators as elements

provides a basis for the development of SBP operators in

multiple dimensions applicable to unstructured grids

� Very general approach to the construction of stable

operators for unstructured grids

� Potential to lead to novel operators with useful properties

� Generality can be exploited to construct methods with

specific properties (with provable time stability by

construction)



Summation by Parts Operators: Definitions

Hδxu = Su , i.e.
∂U
∂x

≈ Du = H
−1

Su

where H is a diagonal SPD matrix that defines an inner product,
norm, and quadrature by

(u, v)H = u
T
Hv , ||u||2

H
= u

T
Hu ,

�
xR

xL

Udx ≈ 1THu

and

S + S
T = E

where E depends on whether or not the nodal distribution, which
can be nonuniform, includes the boundary nodes



Application to a PDE

Linear advection equation:

∂U
∂t

+
∂U
∂x

= 0 , 0 ≤ x ≤ 1 , U(0, t) = UL(t)

Discretize in space on a possibly nonuniform mesh with n nodes to
obtain the semi-discrete form

du

dt
= Au − f (t)

where u = [u1, u1, . . . , un]T

Matrix A includes contribution from treatment of boundary
condition; will use SATs here with σL = −1 (later for element
coupling will use SATs with σL = −1/2, σR = 1/2)
Time stable if all eigenvalues of A have real parts less than or
equal to zero (for A nondefective)



A classical finite-difference SBP operator (p = 2)

D = H
−1

S

Gives a second-order approximation to the first derivative (at the
boundary nodes), which will lead to third-order solution to the
linear convection equation

H = ∆x
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Resulting A matrix when implemented in the traditional
finite-difference manner

A = (n − 1)
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Finite-Difference Operators Implemented as Elements

A =


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Ã = 8
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Generalized SBP example: nonuniform nodal distribution
Hybrid Gauss-trapezoidal-Lobatto quadrature nodal distribution

given for 9 nodes by:

x =
1
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Can be implemented in the traditional manner or as an element of

size ≥ 9



Second generalized SBP example: fixed element size

Diagonal-norm operator on Chebyshev-Gauss-Lobatto quadrature
nodal distribution given for 5 nodes by:
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where 1 is a vector of ones
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Can only be implemented as an element



Intermediate Summary

� Have shown that SBP operators normally implemented in

the traditional finite difference manner can also be

implemented as elements

� Have shown examples of generalized SBP operators, some

of which can only be implemented as elements

� These are not finite-element methods in the strict sense,

as they do not have explicit bases

� This generality can be exploited to construct new

methods with specific properties (with provable time

stability by construction)



Multidimensional SBP Operators for

Unstructured Grids



The matrix Dx is a degree p SBP approximation to the
first derivative ∂

∂x if

1. Dxxax ◦ y ay = axxax−1 ◦ y ay , ∀ ax + ay ≤ p;

2. Dx = H
−1

Sx = H
−1

�
Qx +

1
2Ex

�
,

where Qx is antisymmetric, and Ex is symmetric;

3. H is symmetric positive definite, and;

4.

(xax ◦ y ay )
T
Exxbx ◦ yby =

�

Γ
xax+bx yay+bynxdΓ,

∀ ax + ay , bx + by ≤ τEx

where τEx ≥ p and n = [nx , ny ]
T
is the outward pointing

unit normal to the surface Γ.



The existence of diagonal-norm SBP operators is tied to
the existence of a cubature rule

Theorem: Existence of an SBP operator

If the generalized Vandermonde matrix has full rank on the
node set {(xi , yi )}ni=1, the existence of a cubature rule of degree
τ ≥ 2p − 1 with positive weights is necessary and sufficient
for the existence of degree p diagonal-norm SBP operators
approximating the first derivatives ∂

∂x and ∂
∂y on the same

nodes.



We have constructed simplex SBP operators from existing
cubature rules

p = 1, 3 nodes p = 2, 7 nodes p = 3, 12 nodes p = 4, 18 nodes

p = 1, 4 nodes p = 2, 11 nodes p = 3, 24 nodes p = 4, 45 nodes

https://github.com/OptimalDesignLab/SummationByParts.jl



We verify the triangular SBP operators using the
two-dimensional linear convection equation on a periodic
domain

∂ψ

∂t
+ u ·∇ψ = 0, ∀ (x , y) ∈ [0, 1]2,

ψ(x , 0, t) = ψ(x , 1, t), and ψ(0, y , t) = ψ(1, y , t),

ψ(x , y , 0) =
1

4
(3− cos(2πx)) (3− cos(2πy)) .

� The advection velocity is u = (1, 1)

� RK4 is used for the time-marching scheme



The square domain is divided into 2N2 triangular elements

� N is the number of edges along one side of the domain
� a smooth perturbation is applied to the mesh vertices
� global SBP operators are constructed using the proposed

assembly process



The L2 solution error after one period for a range of
h = 1/N

� even-p operators have lower than expected asymptotic rates



The high-order SBP operators are more efficient when high
accuracy is necessary



The spectrum of the SBP-discretized operator u · ∇ has
machine-zero real part

p = 1 (SBP) p = 1 (SE)



The spectrum of the SBP-discretized operator u · ∇ has
machine-zero real part

p = 2 (SBP) p = 2 (SE)



Summary

SBP operators offer discretizations with

� high-order accuracy,

� efficiency,

� stability.

A distinguishing feature of SBP operators is the flexibility in their
construction, so they can be tailored to particular problem classes.



Exploratory Aerodynamic Shape 
Optimization

• numerical optimization is a powerful tool that enables:

★ optimization and assessment of novel configurations 
and advanced aerodynamic concepts

★ optimization of parameters in flow control strategies

★ possible invention of hitherto unknown 
configurations or concepts



What is exploratory aerodynamic 
shape optimization?

Conceptual 
design

Detailed 
design

Exploratory 
optimization

Comprehensive

Large geometric 
variation

High fidelity

✔ ✔ ✘

✔ ✘ ✔

✘ ✔ ✔



• in the evaluation of new concepts such as unconventional 
aircraft configurations it is critical that the concepts be 
optimized before comparisons are made

• this requires that preconceived notions of geometry be 
discarded as much as possible as well as previous design 
experience (which may not be applicable), leaving the 
optimizer as free as possible

• input from the designer should be limited to objectives, 
constraints, and performance requirements 

Applying Exploratory Aerodynamic Shape 
Optimization to Unconventional Aircraft Configurations



Components of Jetstream Aerodynamic 
Shape Optimization Methodology

• Efficient and robust flow solver for Euler and Reynolds-averaged 
Navier-Stokes equations: Diablo

★ parallel implicit Newton-Krylov-Schur algorithm using 
summation-by-parts method for spatial discretization

• Adjoint method for gradient computation

• B-spline surface geometry parameterization

• Free form deformation or B-spline geometry control

• Integrated mesh movement technique based on B-spline volumes

• Sequential quadratic programming method for gradient-based 
optimization



Axial Deformation Tailored to Generic Wing Systems
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The Blended Wing-Body (BWB)
Advantages:

� Aerodynamic

� High wetted aspect ratio gives high

lift-to-drag ratio

� Natural ‘area-ruling’ improves high-speed

performance

� Structural

� Natural spanloading reduces bending loads

� Propulsive

� Boundary-layer ingesting engines reduce

fuel-burn

� Acoustic

� Body-mounted engines are acoustically

shielded

� Low landing speed reduces airframe noise

Challenges:

� Aerodynamic

� Shock-free airfoils with sufficient thickness

� Maintaining stability and control without

an empennage

� Structural

� Design of non-cylindrical pressure vessel for

the cabin

� More complicated load-paths

� Propulsive

� Robust boundary-layer ingesting engine

technology

� Passenger comfort

� Ride quality

1 / 12



Design Problem UTIAS

Investigate minimum drag
potential of a regional jet

Similar to the Embraer E190
100 passengers
2,000 nmi max range
500 nmi nominal range
Cruise speed of Mach 0.78
Cruise altitude of 36,000 ft

All designs sized using a
low-fidelity conceptual design
tool

5



Baseline Blended Wing-Body (BWB) UTIAS

G L

G L

0

0

0

0

0

0

BWB100-02

Capacity
Passengers + crew 100+5

Max payload 28,400 lb

Geometry
Reference area 2,734 ft

2

Total span 118 ft

Length 70 ft

MAC 42.4 ft

Aspect ratio 5.1

Weight
MTOW 119,700 lb

OEW 69,800 lb

Wing load at MTOW 43.8 lb/ft2

Nominal mission cruise
Range 500 nmi

Altitude 36,000 ft

Mach number 0.78

Reynolds number 76 ×10
6

Weight
*

104,600 lb

CL
*

0.19

CG location
*

41 ft

*
At start of cruise

7



Optimization Definition UTIAS

Trim-constrained drag-minimization

Angle-of-attack (±3◦)

CTW wing and tail angles (±5◦)

Segment spans

Chord and twist

Section shape with t/c constraints

Wing volume constraint

BWB cabin shape constraint

Fins are not modelled, and their drag is accounted for post-optimization

8



Optimization Results UTIAS

Optimized CTW100-10

L/D = 20.0

Optimized BWB100-02

L/D = 21.8

Shock and nearly separation-free
The BWB’s wetted area is 8.4% higher than the CTW
The BWB has 3.3% higher drag

9



Exploratory Result UTIAS

Decreases wetted area by 10%

Slender ‘lifting fuselage’ with a distinct wing

L/D = 26.1

Motivates the redesign and optimization of a new BWB concept

12



Refined BWB Design UTIAS

G L

G L

0

0

0

0

0

0

BWB100-10

Capacity
Passengers + crew 100+5

Max payload 28,400 lb

Geometry
Reference area 2868 ft

2

Total span 94 ft

Length 105 ft

MAC 67.2 ft

Aspect ratio 3.1

Weight
MTOW 115,400 lb

OEW 65,000 lb

Wing load at MTOW 40.2 lb/ft2

Nominal mission cruise
Range 500 nmi

Altitude 36,000 ft

Mach number 0.78

Reynolds number 121 ×10
6

Weight
*

100,000 lb

CL
*

0.17

CG location
*

54 ft

*
At start of cruise

13



ASO of the Refined BWB Design UTIAS

Repeat the trim-constrained
drag-minimization with the
refined BWB

Shock and separation-free

Wetted area 3.6% lower than
BWB100-02

Optimized BWB100-10

L/D = 21.1

14



Sensitivity to Span UTIAS

For BWBs, no prior art exists for the determination of a system
optimal span

Create a second design with increased span

Introduce the ‘bending span’, bbend = b− wbody, as a surrogate for
wing weight

Each of these designs is optimized as before

Design Span Bending Weight* Area Wetted L/D*† Relative
span area† drag*†

[ ft] [ ft] [ lb] [ ft2] [ ft2] [–] [%]

CTW100-10 94 85 92,900 935 5,634 20.0 –
BWB100-02 118 76 104,600 2,732 6,286 21.8 +2.8
BWB100-03 130 88 107,700 2,813 6,444 22.6 +2.0

BWB100-10 94 64 100,000 2,535 5,922 21.1 +1.5
BWB100-12 118 88 105,000 2,674 6,189 23.9 −6.1
* At start of 500 nmi cruise
† Includes fin wetted area/drag contribution

16



What comes next?

• Multipoint aerodynamic shape optimization to enable 
robust designs and good performance over the entire 
flight envelope

• Multimodality can be addressed through a multi-start 
gradient-based approach

• If a truly promising configuration is found, then add 
further considerations, such as aerostructural, stability 
& control requirements, etc.

• Perhaps the BWB is more promising for the regional 
segment than previously thought


